## Developing a Framework for CGE Model: Analysing the Implications of CBAM



#### **The Context**

- The imposition of CBAM will inevitably affect various facets of India's economy, including trade, GDP, employment, household incomes, and overall economic development.
- Utilising indigenously developed ESAM along with the CGE model can help assess economic scenarios and evaluate policy interventions effectively.



## **The Context**

- Objective
  - A critical review of the methods used for computing the effects of carbon pricing policies.
  - To develop a framework for the CGE model for India allowing granular analysis of CBAM's impacts.
- Research Questions
  - What different approaches have been used to assess the potential impacts of CBAM?
  - How to design a CGE model framework for India?
  - How the CSEP CGE model framework can be used to assess the impacts of various policies including CBAM on the Indian economy?



#### Figure 1: Evolution of CBAM in the European Union



#### **Approaches used to analyse impacts of CBAM**

|             | Gravity Model                                                                                                                                                                                                                                                                           | Input-Output Model                                                                                                                                                                                                                                                                           | Accounting Approach                                                                                                                                            | CGE Model                                                                                                                                                                                                                                                                                                             |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description | <ul> <li>A spatial interaction model<br/>that estimates the volume of<br/>interactions between two<br/>geographies based on factors<br/>like country size, distance, etc.</li> </ul>                                                                                                    | <ul> <li>Measures interdependence<br/>among sectors and tracks the<br/>flow of goods and services<br/>across those sectors.</li> </ul>                                                                                                                                                       | <ul> <li>An accounting exercise to<br/>estimate CBAM-exposed<br/>trade and potential carbon<br/>payments.</li> </ul>                                           | <ul> <li>A theoretical model consisting of<br/>numerous simultaneous non-<br/>linear/linear equations used to<br/>compute the implications of various<br/>policies or shocks in the economy.<br/>This makes it a 'computable' general<br/>equilibrium model where all markets<br/>interact simultaneously.</li> </ul> |
| Strengths   | <ul> <li>Captures bilateral trade flows.</li> <li>Can be used to examine the impacts of geo-economic issues other than international trade.</li> </ul>                                                                                                                                  | <ul> <li>Incorporates both direct and indirect effects.</li> <li>Provides detailed sectoral analysis.</li> </ul>                                                                                                                                                                             | <ul> <li>Provides an understanding of<br/>the potential implications of<br/>a trade policy in a relatively<br/>simpler yet effective<br/>framework.</li> </ul> | <ul> <li>Incorporates the supply side of the economy, allowing for price movements.</li> <li>Allows for substitution effects in production and consumption.</li> <li>Allows for the inclusion of non-market activities alongside market mechanisms.</li> </ul>                                                        |
| Weaknesses  | <ul> <li>Focuses on bilateral/bi-regional trade, limiting the scope</li> <li>Less adaptable to structural changes.</li> <li>Inappropriate to use for analysing impact of policies like CBAM, which do not treat trading partners differently based on geographical distance.</li> </ul> | <ul> <li>Certain assumptions like fixed<br/>input proportions, constant<br/>returns to scale, no technological<br/>advancement limit its use.</li> <li>Lacks elasticities of substitution,<br/>hindering its ability to account for<br/>adjustments or technological<br/>changes.</li> </ul> | <ul> <li>Does not consider<br/>behavioural changes or<br/>dynamic adjustments due to<br/>policy changes.</li> </ul>                                            | <ul> <li>Highly complex; requires accurate parameter estimation.</li> <li>Dependence on key economic parameters, like elasticity parameters, to capture behavioural responses.</li> </ul>                                                                                                                             |

#### Selected CGE Model Relating to Carbon Pricing/CBAM

#### **Multi-Country CGE Model**

- Estimates the effects of Border Carbon Adjustment Mechanisms
- Utilises GTAP database
- Studies Include:
  - 1. Takeda and Arimura (2023)
  - 2. Xiaobei et al. (2022)
  - 3. Devarajan et al. (2022)
  - 4. UNCTAD (2021)

#### Single Country CGE Model

- Estimates effects of Domestic Carbon taxes and international emission trading permit schemes.
- Utilises SAM/ESAM database
- Models on the Carbon Pricing include:
  - Ojha et al. (2009)
  - Pradhan and Ghosh (2012)
  - Pal et al. (2015)
  - Banerjee (2021)
- Models for estimating CBAM:
  - 1. Bao et al. (2012)- Impact of Border Tax Adjustments on China's sectoral carbon emissions.



### **Missing Links in Existing CGE Models**

- Level of Disaggregation of Households (HH) as an Institution is not detailed.
  - Majority of CGE models use aggregated households.
  - Pradhan and Ghosh (2012) and Pal et al. (2015): Disaggregates households to analyse the welfare allocation and social equity effects using occupational categories of HH.
  - Ojha (2009) disintegrates the households using consumption expenditure for 5 urban and rural categories each.
- Exports/imports and Customs have not been disaggregated into EU and non-EU countries to examine the effects of CBAM.



### **Structure of CSEP-CGE Model**

- **CGE Framework:** Built on the basic structure of Pradhan and Ghosh (2012), which is based on the IFPRI model and DART 97, EPPA and EMPAX-CGE model.
- Features of this Model:
  - Recursive dynamic, Multisectoral, Neoclassical, Price-Driven CGE model that captures interactions with the energy system.
  - Distinct production structure for fossil fuel (coal, oil and gas) and non-fossil fuel sectors.
  - Aggregated ESAM which has 24 production sectors (3 fossil fuel and 21 non-fossil fuel sectors), 2 factors of production and 10 households evenly divided between rural and urban based on the expenditure quintiles is used.
- Adequacy of this Model: Detailed socio-economic impacts of CBAM could be analysed for India.



#### **Nesting Structure**



#### **Schematic representation- Flow of Marketed Commodities**





### **Data and Institutions**

- Social Accounting Matrix- primary database for CGE models
- This study utilises CSEP's ESAM 2019–20 for India (Chadha et al., 2023)
- ESAM has been aggregated into:
  - 24 production sectors (comprising three fossil fuel sectors—coal, oil, and natural gas—and 21 non-fossil fuel sectors),
  - Two factors of production (labour and capital),
  - 10 households categories,
  - Institutions such as private enterprises, public enterprises, government, Net Indirect Taxes, a capital account, and the Rest of the World.



### **Utilization of CSEP-CGE Model Framework**

- Structured to analyse different climate policy scenarios, including carbon taxes, emissions trading schemes, CBAM
- Some policy scenarios that may be examined using this model are
- Scenario 1: No Domestic Carbon Pricing Policy
  - Impact on GDP, Employment, Trade, Emissions, Inequality, etc.
  - Identify redistribution policies to minimise the impacts of CBAM.
- Scenario 2: With Domestic Carbon Pricing Policy
  - To devise an optimal Carbon Pricing Strategy for India.
  - To simulate the generated revenue for technological advancement of the CBAM industries and for redistribution.



### **Utilization of CSEP-CGE Model Framework**

- Scenario 3: Other Policy Responses
  - Imposition of equivalent trade measures like tariff and non-tariff barriers.
  - To examine the impact of a global carbon policy in curbing emissions efficiently.



### Conclusion

- EU-CBAM aims to reduce carbon leakage and secure a level playing field for EU producers
- Has the potential to reshape how countries conduct international trade
- This paper provides a concise overview of CBAM and the methodologies used in analysing climate mitigation policies, such as CBAM, within the existing literature
- It underscores the advantages and drawbacks associated with existing economic models—such as gravity, Input-Output, and accounting approaches—in assessing the impact of CBAM on competitiveness, carbon leakage, and social welfare
- CGE models emerge as the preferred choice for conducting economy-wide impact assessments of CBAM
- This Study provides the structure for a single-country CGE model framework that can examine issues relating to the impact of CBAM on the Indian economy



# Thank you

